14 research outputs found

    A novel technique for reducing false positive detections in CAD-CTC

    Get PDF
    Computed tomography colonoscopy (CTC) is an emerging alternative to conventional colonoscopy for colorectal cancer screening. A series of computer assisted diagnosis (CAD) techniques have been developed for use in CTC. Although high levels of accuracy for polyp detection have been reported, the problem of excessive false positive detections still warrants attention. We present a CAD-CTC technique that has been developed specifically to reduce the number of false positive detections without compromising polyp detection accuracy. The technique incorporates a novel intermediate stage that restructures initial polyp candidates so that they conform more closely to the shape of actual polyps. The restructuring process causes false positives to expand to include more false positive characteristics, whereas, actual polyps retain their original polyp-like characteristics. An evaluation of the documented technique demonstrated that it can be successfully applied to the majority of polyp candidates, and that its use can reduce the number of false positive detections by up to 57.8%

    Colon centreline calculation for CT colonography using optimised 3D opological thinning

    Get PDF
    CT colonography is an emerging technique for colorectal cancer screening. This technique facilitates noninvasive imaging of the colon interior by generating virtual reality models of the colon lumen. Manual navigation through these models is a slow and tedious process. It is possible to automate navigation by calculating the centreline of the colon lumen. There are numerous well documented approaches for centreline calculation. Many of these techniques have been developed as alternatives to 3D topological thinning which has been discounted by others due to its computationally intensive nature. This paper describes a fully automated, optimised version of 3D topological thinning that has been specifically developed for calculating the centreline of the human colon

    Enhanced computer assisted detection of polyps in CT colonography

    Get PDF
    This thesis presents a novel technique for automatically detecting colorectal polyps in computed tomography colonography (CTC). The objective of the documented computer assisted diagnosis (CAD) technique is to deal with the issue of false positive detections without adversely affecting polyp detection sensitivity. The thesis begins with an overview of CTC and a review of the associated research areas, with particular attention given to CAD-CTC. This review identifies excessive false positive detections as a common problem associated with current CAD-CTC techniques. Addressing this problem constitutes the major contribution of this thesis. The documented CAD-CTC technique is trained with, and evaluated using, a series of clinical CTC data sets These data sets contain polyps with a range of different sizes and morphologies. The results presented m this thesis indicate the validity of the developed CAD-CTC technique and demonstrate its effectiveness m accurately detecting colorectal polyps while significantly reducing the number of false positive detections

    A novel technique for reducing false positive detections in CAD-CTC

    Get PDF
    Computed tomography colonoscopy (CTC) is an emerging alternative to conventional colonoscopy for colorectal cancer screening. A series of computer assisted diagnosis (CAD) techniques have been developed for use in CTC. Although high levels of accuracy for polyp detection have been reported, the problem of excessive false positive detections still warrants attention. We present a CAD-CTC technique that has been developed specifically to reduce the number of false positive detections without compromising polyp detection accuracy. The technique incorporates a novel intermediate stage that restructures initial polyp candidates so that they conform more closely to the shape of actual polyps. The restructuring process causes false positives to expand to include more false positive characteristics, whereas, actual polyps retain their original polyp-like characteristics. An evaluation of the documented technique demonstrated that it can be successfully applied to the majority of polyp candidates, and that its use can reduce the number of false positive detections by up to 57.8%

    A visual programming environment for machine vision engineers

    Get PDF
    This paper details a free image analysis and software development environment for machine vision application development. The environment provides high-level access to over 300 image manipulation, processing and analysis algorithms through a well-defined and easy to use graphical interface. Users can extend the core library using the developer's interface via a plug-in which features automatic source code generation, compilation with full error feedback and dynamic algorithm updates. Also discusses key issues associated with the environment and outline the advantages in adopting such a system for machine vision application development

    Identification of body fat tissues in MRI data

    Get PDF
    In recent years non-invasive medical diagnostic techniques have been used widely in medical investigations. Among the various imaging modalities available, Magnetic Resonance Imaging is very attractive as it produces multi-slice images where the contrast between various types of body tissues such as muscle, ligaments and fat is well defined. The aim of this paper is to describe the implementation of an unsupervised image analysis algorithm able to identify the body fat tissues from a sequence of MR images encoded in DICOM format. The developed algorithm consists of three main steps. The first step pre-processes the MR images in order to reduce the level of noise. The second step extracts the image areas representing fat tissues by using an unsupervised clustering algorithm. Finally, image refinements are applied to reclassify the pixels adjacent to the initial fat estimate and to eliminate outliers. The experimental data indicates that the proposed implementation returns accurate results and furthermore is robust to noise and to greyscale in-homogeneity

    Rapid automated measurement of body fat distribution from whole-body MRI

    Get PDF
    The accurate determination of a person’s total body fat is an important issue in medical analysis because obesity is a significant contributing factor to a variety of serious health problems. The medical literature identifies a wide range of diseases that are closely linked to obesity. Current methods of fat assessment are largely inaccurate, and most current methods of fat determination cannot show regional fat distribution, which is important in defining disease risk. We introduce a method that combines computer-aided techniques with whole-body MRI techniques and enables accurate quantification and visualization of total body fat burden and regional fat distribution. This technique may be important in identifying and treating at-risk populations
    corecore